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Abstract 

Background The cerebrospinal fluid (CSF), primarily generated by the choroid plexus (ChP), is the major carrier 
of the glymphatic system. The alternations of CSF production and the ChP can be associated with the Alzheimer’s 
disease (AD). The present work investigated the roles of the ChP in the AD based on a proposed ChP image segmen-
tation pipeline.

Methods A human-in-the-loop ChP image segmentation pipeline was implemented with intermediate and active 
learning datasets. The performance of the proposed pipeline was evaluated on manual contours by five radiologists, 
compared to the FreeSurfer and FastSurfer toolboxes. The ChP volume and blood flow were investigated among AD 
groups. The correlations between the ChP volume and AD CSF biomarkers including phosphorylated tau (p-tau), total 
tau (t-tau), amyloid-β42 (Aβ42), and amyloid-β40 (Aβ40) was investigated using three models (univariate, multiple 
variables, and stepwise regression) on two datasets with 806 and 320 subjects.

Results The proposed ChP segmentation pipeline achieved superior performance with a Dice coefficient of 0.620 
on the test dataset, compared to the FreeSurfer (0.342) and FastSurfer (0.371). Significantly larger volumes (p < 0.001) 
and higher perfusion (p = 0.032) at the ChP were found in AD compared to CN groups. Significant correlations were 
found between the tau and the relative ChP volume (the ChP volume and ChP/parenchyma ratio) in each patient 
groups and in the univariate regression analysis (p < 0.001), the multiple regression model (p < 0.05 except for the 
t-tau in the LMCI), and in the step-wise regression model (p < 0.021). In addition, the correlation coefficients changed 
from − 0.32 to − 0.21 along with the AD progression in the multiple regression model. In contrast, the Aβ42 and Aβ40 
shows consistent and significant associations with the lateral ventricle related measures in the step-wise regression 
model (p < 0.027).

Conclusions The proposed pipeline provided accurate ChP segmentation which revealed the associations 
between the ChP and tau level in the AD. The proposed pipeline is available on GitHub (https:// github. com/ princ 
eleeee/ ChP- Seg).
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Introduction
The glymphatic system provides a drainage pathway 
for the clearance of metabolism waste in the brain, in 
which cerebrospinal fluid (CSF) serves as the critical car-
rier [1], fluxing the interstitial fluid through the Aqua-
porin-4 channels. The process is believed to help wash 
out the hallmarks of Alzheimer’s Disease (AD), including 
amyloid-β (Aβ) and tau protein, whose concentrations 
reflect pathological changes such as neuritic plaques and 
neuronal degeneration [2–4].

The choroid plexus (ChP) serves as the major secretory 
organ of CSF. Positioned on the floor of the ventricles, 
the ChP consists of fenestrated capillaries enveloped by 
a monolayer of epithelial cells. These epithelial cells are 
arranged in tight junctions, forming the blood-CSF bar-
rier. Plasma from choroidal capillaries is transferred to 
the stroma and further filtered by the selective transport-
ers of epithelial cells, finally flowing to ventricles as CSF 
[5]. CSF from the lateral ventricle (LVEN) successively 
passes through the third ventricle, and fourth ventricle 
to the subarachnoid space. CSF enters the brain paren-
chyma and participates in cleaning the metabolism waste 
through the glymphatic system.

Previous studies have also explored the potential asso-
ciations between AD and ChP. The volume of the ChP 
was reported to be larger in AD patients compared to 
the control group (CN) [6, 7]. For example, Tadayon et al. 
reported the correlations between ChP volume and CSF 
biomarkers of amyloid-β42 (Aβ42), total tau (t-tau), and 
phosphorylated tau (p-tau) in AD patients [6]. In addi-
tion, Choi et al. reported the reduced permeability of the 
ChP in AD patients [7]. ChP enlargement is also observed 
in other aging-related diseases. For example, ChP volume 
is negatively correlated with α-syn in Parkinson’s disease 
[6] and enlarged ChP volume was also found in patients 
with early psychosis [8] and multiple sclerosis [9, 10].

Although ChP volumes in AD have been reported, 
the ChP segmentation and quantification model can 
be improved further. First, low accuracy in ChP seg-
mentation has been reported in the FreeSurfer tool-
box (Athinoula A. Martinos Center for Biomedical 
Imaging, Boston, US) [11], which was an atlas-based 
method and widely used in the above studies. Conse-
quently, inaccurate ChP segmentation will introduce 
additional variance in the subsequent analyses. For 
example, it may be one of the possible reasons that no 
correlation was detected between the ChP and Aβ42 
using the multivariate regression model [6]. Although 
enhanced ChP segmentation methods were proposed 
through the Gaussian Mixture Model, these methods 
relied on image intensity, making them susceptible to 
performance degradation when artifacts are present 
[12, 13]. Second, the overall clearance efficiency of the 

glymphatic system is associated with the brain volume 
directly. Possible impacts of the cerebral volume among 
individuals should be considered. In addition, the blood 
flow of the ChP is associated with the CSF generation 
[14]. However, the ChP perfusion in AD has not been 
investigated with accurate ChP segmentation. Third, 
although the alternation of the ChP was investigated 
through all AD groups, its changes at each AD progres-
sion stage is unknown.

A critical step of ChP analysis is to locate its region 
accurately. Deep learning algorithms have shown prom-
ising results in medical image analysis tasks, such as 
convolutional neural networks and active learning [15, 
16]. Medical image segmentation requires pixel-wise 
annotation from experienced radiologists, which can be 
tedious and costly. For example, the ChP annotation by 
a radiologist requires 20 ± 5 min [13]. Recently, there has 
been an emergence of research focused on brain seg-
mentation based on MRI. Opfer et  al. developed a 3D 
convolutional neural network that enhanced the stabil-
ity of thalamus segmentation across MRI scanners [17]. 
The hippocampus segmentation was proposed by Chen 
et  al. with a multi-layer feature learning module [18]. 
Rau et  al. obtained precise segmentation of putamen 
using deep neural patchwork [19]. Beyond these targeted 
subcortical structures, the field of whole-brain MRI seg-
mentation is also advancing. Yu et al. introduced UNesT 
which leverages hierarchical transformer encoders to 
enhance segmentation accuracy [20]. Coupe et al. devel-
oped a coarse-to-fine segmentation strategy employing 
two ensembles of 125 3D U-Nets [21]. Huo et al. intro-
duced SLANT-27, a model combining outputs from 27 
distinct fully convolutional networks for final segmen-
tation [22]. Despite the advancements and the intricate 
architecture of these models, they lack support for ChP 
segmentation. Because of the research interests of ChP 
and CSF circulation in neurodegeneration and other dis-
eases, an ChP segmentation pipeline is highly demanded. 
Although deep learning ChP segmentation models were 
proposed, it is challenging to achieve sufficient accuracy 
with a small number of manually labeled images [23, 24]. 
Fortunately, the Human-in-the-loop strategy [25, 26], 
which includes humans in the process of model training 
to reduce the data amount, can improve the model per-
formance effectively.

Therefore, in the present work, a ChP segmentation 
pipeline was developed using the human-in-the-loop 
method (the model is available on https:// github. com/ 
princ eleeee/ ChP- Seg). The proposed pipeline provided 
accurate ChP segmentation compared to the conven-
tional method, and it enables the detection of the subtle 
correlations between the ChP volume and the protein 
levels in the AD subgroups.

https://github.com/princeleeee/ChP-Seg
https://github.com/princeleeee/ChP-Seg
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Method
Datasets for the ChP segmentation pipeline developments

1. LVEN intermediate training dataset. A total of 35 
T1-weighted MRI from the 2012 MICCAI Multi-
Atlas Labeling Challenge dataset [27] were in-house 
annotated (L.Z. with 10  years’ experience in MR 
image processing).

2. ChP training dataset. 50 T1-weighted MRI from Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). These images were in-
house labeled (L.Z. with 10 years’ experience in MR 
image processing) to provide ground truth segmenta-
tion of the ChP.

3. ChP multi-rater test dataset. 20 T1-weighted MRI 
from ADNI. Each image was labeled by five expe-
rienced radiologists (average 3  years’ experience) 
and the final ground truth was decided by a major-
ity vote. Meanwhile, the images were also labeled by 
five trainees (1–2 years’ experience in MR image pro-
cessing) to provide naive labels compared to the pro-
posed ChP segmentation pipeline and experienced 
radiologists.

Datasets for investigating the ChP‑related features in AD

1. Subset-Trio: to investigate the relationship between 
ChP volume and proteins including p-tau, t-tau, and 
Aβ42. 806 subjects were selected from ADNI, includ-
ing 156 CN subjects, 95 subjects with significant 
memory concerns (SMC), 272 subjects with early-
mild cognitive impairment (EMCI), 155 subjects 

with late-mild cognitive impairment (LMCI), and 
128 subjects with AD. The inclusion criteria were the 
ones with complete p-tau, t-tau, and Aβ42 measure-
ments in the baseline screening records.

2. Subset-Aβ40: This subset was extracted to examine 
the association between the ChP volume and the CSF 
biomarker amyloid-β40 (Aβ40), which was not inves-
tigated in previous works. It comprises subjects from 
the ADNI who have Aβ40 and available baseline 
records. A total of 320 subjects were selected, includ-
ing 191 CN, 99 subjects with MCI, and 30 subjects 
with AD.

3. Subset-ASL: 145 subjects were selected, including 88 
CN, 36 MCI, and 21 AD. The inclusion criteria were 
the availability of arterial spin labeling (ASL) images, 
T1-weighted MRI, and acquisitions using GE scan-
ners.

The demographic information and MRI protocols are 
summarized in Table 1 and 2.

ChP segmentation pipeline
The proposed segmentation pipeline consists of pre-pro-
cessing, two-stage segmentation of LVEN and ChP, and 
restoration, Fig. 1. It was implemented in Keras (version 
2.4.1).

In the pre-processing module, the original images 
were standardized chronologically. Firstly, the images 
were reoriented to the RAS (Right–Anterior–Superior) 
coordinate system and resampled to an isotropic reso-
lution of 1   mm3. Skull stripping was performed using 
the Deepbrain [28] algorithm on T1-weighted MR 
images, resulting in a brain region mask by a threshold 

Table 1 Three subsets from the ADNI dataset

“-” means this item is not available

Datasets Group N Age Male Aβ42 (pg/mL) t‑tau (pg/mL) p‑tau (pg/mL) Aβ40 (pg/mL)

Subset-trio CN 156 73.5 ± 6.4 0.49 1395.19 ± 670.08 237.31 ± 90.39 21.68 ± 9.12 –

SMC 95 72.0 ± 5.4 0.41 1370.40 ± 612.48 239.29 ± 93.19 21.79 ± 9.57

EMCI 272 71.1 ± 7.3 0.56 1175.45 ± 584.38 255.51 ± 121.76 24.18 ± 13.72

LMCI 155 72.1 ± 7.4 0.54 935.32 ± 492.43 308.65 ± 136.14 30.21 ± 15.02

AD 128 74.4 ± 8.4 0.60 717.39 ± 447.22 376.34 ± 155.60 37.13 ± 16.20

Total 806 72.4 ± 7.3 0.53 1121.15 ± 614.90 279.42 ± 131.66 26.63 ± 14.29

Subset-Aβ40 CN 191 70.4 ± 6.2 0.35 – – – 18785.03 ± 5250.26

MCI 99 70.7 ± 7.3 0.54 17784.14 ± 5373.90

AD 30 72.0 ± 8.9 0.67 16183.00 ± 4939.15

Total 320 70.7 ± 6.9 0.44 18231.44 ± 5305.46

Subset-ASL CN 88 74.8 ± 8.0 0.45 – – – –

MCI 36 72.6 ± 8.0 0.56

AD 21 76.1 ± 5.8 0.71

Total 145 74.4 ± 7.8 0.52
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of 0.5. Subsequently, an image patch of 160 × 200 × 160 
voxels was cropped based on the center of the brain 
mask. This cropping step aimed to balance the fore-
ground and background by removing the background 
areas based on prior knowledge.

The two-stage segmentation model shared the same 
architecture, optimized 3D U-Net [29], which includes 
residual connections and the PReLU activation func-
tion (detailed model structures were provided in 
Table  S1). The output of the LVEN segmentation was 
cropped to a 96 × 96 × 80 voxel patch, which served as 
the input of the ChP segmentation model. For both 
models, the dice loss was used to train the model in 200 
epochs. The batch size was set to 2. The training pro-
cess was initiated by a learning rate of 3 ×  10–4, which 
was decreased by a factor of 0.5 when the loss function 
was on a plateau for 30 epochs. To avoid the overfitting 

of the models, data augmentation was performed by 
randomly flipping the images. Five-fold cross-validation 
was used to evaluate the stability of the model. With 
the selected hyperparameters, the model was retrained 
on the entire datasets of the LVEN intermediate train 
dataset and the ChP train dataset from scratch. 

Active learning strategy was adapted to improve the per-
formance of models on the ADNI data. The predictions 
of the ADNI data inferred by intermediate models were 
inspected by the human expert (J.L. with 5 years’ experi-
ence in deep learning). Specifically, the segmentation of 
the LVEN and ChP was evaluated according to structural 
continuity in the 3D view, including a C-shaped structure 
for the LVEN and ribbon-like structures for the ChP. The 
top-15 worst segmentations were manually corrected and 
used to extend the current training dataset. This active 
learning procedure can be repeated until no obvious error 

Table 2 MRI protocols

dataset

LVEN 
intermediate 

training dataset

ChP training 
dataset

ChP multi-rater 
test dataset Subset-Trio Subset-Aβ40 Subset-ASL

Siemens:35 Siemens:50
Philips:0

GE:0

Siemens:12
Philips:0

GE:8

Siemens:437 
Philips:157

GE:212

Siemens:193
Philips:66

GE:61

Siemens:0
Philips:0
GE:145

Scanner Siemens Siemens Philips GE
Field Strength 1.5T 3T 3T 3T

Sequence MP-RAGE MP-RAGE MP-RAGE IR-SPGR/ IR-FSPGR
Voxel size (mm) 1×1×1.25 1-1.1×1-1.1×1-1.2 1-1.1×1-1.1×1-1.2 1-1.1×1-1.1×1-1.2

TR (ms) 9.7 2300 6.8 7
TE (ms) 4.0 3.0 3.1 2.8
TI (ms) 20 900 0 400

Flip angle 10 9 9 11
Parallel Imaging

(optional) No GRAPPA2 SENSE2 Asset2

Fig. 1 The proposed ChP segmentation pipeline. T1W MR image was pre-processed (a) and passed into the two-stage models with active learning 
correction (b). The ChP segmentation result was restored to the original image space (c)
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is found by the human expert. In this work, 15 worst cases 
from Subset-Trio were selected, manually corrected, and 
then added to the training data to improve the model. It 
should be noted that the active learning operation was only 
required in the development stage of the models, and not 
needed in the deployment stage of the pipeline. 

The performance of the proposed pipeline, FreeSurfer 
(version 7.2.0), and its deep learning approach, Fast-
Surfer (version 1.1.0) [30], were compared. The following 
metrics were employed to assess the efficacy of various 
methodologies, including the Dice coefficient, Jaccard 
coefficient, recall, and Hausdorff distance. The annota-
tion consistency for intra-radiologist and intra-trainee 
was measured by the average Dice coefficients between 
each intra-pairwise combination on the ChP multi-rater 
test dataset.

Statistical models
ChP and LVEN volumes in the AD
The Shapiro–Wilk test and Levene test were utilized to 
assess the normality and homogeneity of variance for 
LVEN and ChP volume in Subset-Trio, which was a pre-
requisite for further volumetric distribution compari-
son among the diagnostic groups (parametric method 
One-way ANOVA or non-parametric method Kruskal–
Wallis followed by corresponding Post-Hoc multiple 
comparisons).

ChP perfusion functionality comparison
Gray matter (GM) was segmented from T1W using the 
SPM12 toolbox (Wellcome Trust Center for Neuroim-
aging, London, UK). Then the ASL was registered to the 
GM mask of the T1W and ChP was extracted using the 
mask from the proposed pipeline. The cerebral blood 
flow (CBF) of the brain was calculated using the follow-
ing formula [31].

Here, � (mL/g) stands for brain blood partition coeffi-
cient, ASL is the signal from ASL scan, PLD is the time 
interval between labeling pulse ends and image acquisi-
tion starts in seconds, T1,blood is the longitudinal relaxa-
tion time of blood in the brain, α is the labeling efficiency 
(typically 0.95), PD is the signal in the proton density-
weighted image, τ is label duration in seconds. Relative 
perfusion of ChP was calculated by dividing its CBF with 
the CBF of the GM region.

Normality and homogeneity of variance for the differ-
ent groups within Subset-ASL were checked using the 
Shapiro–Wilk test and Levene test. Based on the results, 

CBF =

6000 · � · ASL · e

PLD

T1,blood

2 · α · T1,blood · PD · (1− e
−

τ
T1,blood )

the Mann–Whitney U or t-test will be used to compare 
the CBF between AD and CN.

Relationship between ChP volume and protein levels
To investigate the relationship between ChP volume and 
the levels of four proteins (p-tau, t-tau, Aβ42, and Aβ40), 
three models were developed. First, a linear regression 
model with the protein level as the dependent variable 
and ChP volume as the independent variable. Second, a 
multiple linear regression model including age, gender, 
LVEN volume, and brain parenchyma volume (computed 
by the FreeSurfer which excludes cerebellum, brain stem, 
CSF, ventricle, and ChP). Third, a stepwise regression 
model included ChP/parenchyma ratio, ChP/LVEN ratio, 
ChP volume, LVEN volume, age, gender, and parenchyma 
volume.

The statistical analysis was performed using SPSS 26.0 
software.

Results
ChP segmentation accuracy
The mean dice of radiologists’ manual annotation was 
0.884 and the consistency was 0.800 among the five radi-
ologists. In contrast, the mean dice was 0.621 and the 
consistency was 0.608 among the five trainees. The whole 
human-in-the-loop was conducted twice. After the first 
iteration, extra 15 MRI from Subset-Trio were incorpo-
rated to enhance the models. The mean Dice coefficient 
of the proposed LVEN segmentation models was 0.825 
in the five-fold cross-validation. In contrast, it was 0.805 
in the FreeSurfer and 0.470 in the FastSurfer. The mean 
Dice coefficient of the proposed ChP segmentation mod-
els was 0.739 in the five-fold cross-validation. For ChP 
multi-rater test dataset, the proposed pipeline outper-
formed the FreeSurfer and the FastSurfer methods by 
27.8% and 24.9% higher Dice coefficient, 24.8% and 22.6% 
higher Jaccard coefficient, 32.7% and 31.5% higher recall, 
and 66.3% and 53.5% lower Hausdorff distance, Table 3. 
The FreeSurfer underestimated the inferior horn of 
LVEN, while FastSurfer wrongly recognized some part of 
the gray matter as LVEN, Fig. 2a. Both the FreeSurfer and 
FastSurfer underestimated the ChP, Fig. 2b. In contrary, 
the proposed pipeline achieved more consistent segmen-
tation as the overlapped regions of the radiologists.

ChP volumes in AD
Figure 3 shows the distributions of ChP and LVEN vol-
umes in each patient group. The Shapiro–Wilk test and 
Levene test showed that ChP volume in each group fol-
lowed normal distributions and had homogeneous 
variances (p > 0.05, Table  S2 and S3). One-way ANOVA 
indicated that the mean ChP volumes among the five 
groups were significantly different (F = 6.973, p < 0.001). 
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Specifically, the ChP volumes in the AD and LMCI 
groups are significantly greater than in the CN group 
(Tukey Post Hoc Test, p < 0.05, Fig. 3a and Table S4).

The LVEN volume did not satisfy the normality and 
variance homogeneity tests (Tables S2 and S3). Non-
parametric independent-samples Kruskal–Wallis test 
showed significant differences in LVEN volumes among 

the five groups (H = 53.351, p < 0.0001). Pairwise compar-
isons of groups revealed significant differences in the dis-
tribution of LVEN volume between SMC-AD, CN-LMCI, 
CN-AD, EMCI-AD, and LMCI-AD, Fig. 3b and Table S5.

ChP blood flow in AD
The relative perfusion of ChP in the three groups showed 
homogeneous variance but the CN group did not fol-
low normal distribution (refer to Table S6 and S7 in the 
supplementary material), Fig. 4. Non-parametric Mann–
Whitney U-test showed that AD patients had signifi-
cantly higher ChP relative perfusion compared to the CN 
group (Z = 682.0, p = 0.032).

ChP volumes and protein levels
The histograms of protein levels showed normal distribu-
tion in Aβ40 and skew distributions in Aβ42, t-tau, and 

Table 3 ChP segmentation performance quantitative 
comparison on the ChP multi-rater test dataset

Metrics Dice coefficient Jaccard 
coefficient

Recall Hausdorff 
distance

Proposed 0.620 0.458 0.721 14.817

FreeSurfer 0.342 0.210 0.394 44.041

FastSurfer 0.371 0.232 0.406 31.859

Fig. 2 Segmentation results of the LVEN (a) and ChP (b) for selected subjects. The ground truth (GT) was votes from five radiologists

Fig. 3 Volumetric distribution of ChP (a) and LVEN (b) in Subset-Trio. “*”, “**”, “***” stands for the p-values from 0.05 to 0.01, from 0.01 to 0.001, 
and less than 0.001 respectively
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p-tau, Figure S1. Therefore, an arithmetic log transforma-
tion was applied to these proteins to meet the assump-
tions of the linear regression. Although significant 
correlations between the ChP volume and each protein 
level was found with all the subjects using the simple 
linear regression model, the associations may be not sig-
nificant in each group, Table 4, Figure S2, and S3. Specifi-
cally, the ChP volume shows significant correlations with 
the p-tau and t-tau levels in each patient group, while it 
is not significantly correlated with the Aβ42 and Aβ40 in 
the CN, MCI, and AD groups.

Considering the LVEN volume, age, gender, and brain 
parenchyma volume (Pare), the ChP volume exhibited 
significant correlations with Aβ42, p-tau, and t-tau (p is 
from 0.012 to 0.001) in all subjects in the multiple linear 
regression model, Table  5. More importantly, the ChP 
volume is correlated with the p-tau and t-tau in most 
patient groups (p is from 0.027 to 0.001, except for the 
LMCI group) and the correlation coefficients, β , are 

generally reducing in their absolute values along with the 
AD progression. In contrast, the Aβ42 and Aβ40 levels 
are significantly correlated (p is from 0.017 to 0.001) with 
the LVEN volume mostly, except for the Aβ42 in the CN, 
EMCI and AD groups.

By controlling the colinear and excluding insignificant 
variables, the stepwise regression models show simi-
lar results as the multiple linear regression model with 
improved significance levels, Table  6. The ChP related 
variables, including ChP volume and ChP/parenchyma 
ratio, showed significant correlations (p is from 0.001 to 
0.021) with p-tau and t-tau in each patient group. In con-
trast, the LVEN related variables show significant corre-
lations (p is from 0.001 to 0.027) with the Aβ42 and Aβ40 
levels, except for the Aβ42 in EMCI group. As expected, 
the age is also a significant contributor in most groups.

Discussion
This study proposed a human-in-the-loop ChP segmen-
tation pipeline, which improves the accuracy of ChP 
measures in AD studies. Based on the proposed pipeline, 
the work demonstrated sequentially increased ChP vol-
ume and perfusion with the progression of AD and sig-
nificant correlations between the ChP related variables to 
p-tau and t-tau in entire and each patient groups.

The proposed human-in-the-loop ChP segmenta-
tion pipeline enabled accurate quantification of the 
relationship between ChP and AD. The proposed pipe-
line demonstrated a similar performance as the manual 
annotations provided by trainees, without inter-subject 
inconsistency. More importantly, it provided superior 
performances compared to the FreeSurfer and Fast-
Surfer toolboxes. Due to the atlas-based segmentation 
approach, FreeSurfer may face challenges in segmenting 
enlarged and deformed ChP in AD patients. Since Fast-
Surfer was trained under the supervision of FreeSurfer, 
it inherits similar pitfalls of the FreeSurfer methodology. 
In contrast, the proposed pipeline removed irrelevant 

Fig. 4 ChP relative perfusion distribution in Subset-ASL. “*” means 
the median of the two groups are different at the level of p < 0.05

Table 4 Simple linear regression between the ChP volume and p-tau, t-tau, Aβ42, and Aβ40

β is the standardized coefficient in the regression model
* Bolded numbers indicated statistically significant p-values (p < 0.05)

p‑tau t‑tau Aβ42 Aβ40

β p β p β p β p

All − 0.136 0.001 − 0.151 0.001 − 0.263 0.001 − 0.196 0.001
CN − 0.218 0.006 − 0.209 0.009 − 0.143 0.076 − 0.241 0.001
SMC − 0.305 0.003 − 0.292 0.004 − 0.252 0.014
EMCI − 0.166 0.006 − 0.185 0.002 − 0.223 0.001 − 0.161 0.112

LMCI − 0.216 0.007 − 0.226 0.005 − 0.273 0.001
AD − 0.359 0.001 − 0.376 0.001 − 0.156 0.078 0.028 0.882
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anatomical regions using the two-step approach, which 
balanced the fore- and back-ground data. Because of 
the efficiency and success of 3D U-Net in medical image 
segmentation, it was selected as the foundational archi-
tecture for our pipeline. Meanwhile, the segmentation 
model was trained efficiently through a human inter-
vention process. This intervention helps in minimizing 
the domain gap between train and test data in an effi-
cient way. Based on the multi-rater labels, the proposed 
method outperformed the FreeSurfer and FastSurfer in 
the ChP segmentation and, therefore, it can reveal the 
subtle ChP changes related to AD protein biomarkers. 
In addition, the proposed pipeline is open-source online, 
which provides a ready-to-use pipeline for other ChP 
related studies.

Although LVEN segmentation was provided in the 
proposed pipeline, it can be replaced by other available 
methods. Since the ChP is a relatively small structure 
in the whole brain, the two-step segmentation strategy 
provided more balanced foreground and background 
in the ChP segmentation task. It can improve the accu-
racy of segmentation, as reported in the previous work 
[11]. Although the two-step segmentation was built as 
an all-in-one pipeline in the present work, the first step, 
LVEN segmentation, could be provided by established 
toolboxes. The LVEN segmentation mainly provides 
a coarse location of the ChP, which has a negligible 
impact on the ChP segmentation accuracy. However, 

the LVEN segmentation accuracy may directly affect 
the quantification of LVEN volume and statistical mod-
els with the protein levels of AD patients.

The enlarged ChP volume and increased blood flow in 
AD patients may reveal the compensation mechanism 
in the glymphatic system. The amount of CSF delivered 
to the brain parenchyma is closely associated with the 
cleaning of AD biomarkers. Our results demonstrate 
that ChP gets larger with the progression of AD, which 
is in line with the previous study [6]. Since the ChP vol-
ume was found to be related to the CSF production [32, 
33], a larger ChP volume may indicate increased CSF 
secretion, which is used to clean the brain metabolism 
waste through the glymphatic system. This assumption 
can be further supported by the higher ChP perfusion 
in the AD. Eisma et  al.’s work suggested that the ChP 
perfusion is positively correlated with the net CSF flow 
[14]. Although the total blood flow of the ChP was not 
measured directly in this work, the enlarged ChP vol-
ume and increased relative blood flow may suggest the 
increased total blood flow and therefore, the increased 
total CSF generation.

Establishing significant correlations between tau and 
ChP-related variables within each patient group may 
provide additional insights into the association between 
the ChP and AD. Although Tadayon et  al.’s work [6] 
reported a correlation across all subjects, the variances 
explained by the ChP in each group was not explained 
thoroughly. The association at the group level can 
strengthen confirmation and provide additional insights. 
First, the increased ChP volume and abnormal tau level 
in AD patients were reported [6], which may indicate the 
compensation mechanism between the two. One possi-
ble explanation is that the tau protein could be trapped 
within the ChP capillaries, leading to the enlargement 
of the ChP as a compensatory mechanism to maintain 
its function [34]. This competitive interaction may be 
shown as a negative correlation between the ChP volume 
and the tau level in the CSF. Second, it is possible that 
the increased ChP volume indicates an improved clear-
ance mechanism in the glymphatic system. Following this 
assumption, reduced correlations may suggest a break-
down in the cleansing system along with the AD progres-
sion. In other words, the enhanced clearance facilitated 
by the enlarged ChP volume may still be insufficient to 
effectively clear the excess tau proteins, resulting in 
increased tau levels in AD patients. However, decreased 
tau levels in AD patients were also reported in the lon-
gitudinal studies [35] [36]. Its interaction with the ChP 
requires further investigation.

Besides the absolute volume of ChP, the ratio of ChP 
volume and parenchyma volume may provide an effec-
tive measure of the clearance efficiency. The underlying 

Table 5 Multiple linear regression in each group on p-tau, t-tau, 
Aβ42, and Aβ40

p-tau t-tau Aβ42 Aβ40
Var β p β p β p β p

Total ChP -0.200 0.001 -0.199 0.001 -0.111 0.012 -0.100 0.095
LVEN -0.048 0.271 -0.076 0.078 -0.260 0.001 -0.392 0.001
Age 0.197 0.001 0.208 0.001 0.034 0.379 0.326 0.001
Gender 0.058 0.163 0.052 0.216 -0.026 0.519 -0.026 0.687
Pare -0.128 0.002 -0.135 0.001 0.132 0.001 0.108 0.061

CN ChP -0.327 0.001 -0.306 0.001 -0.065 0.531 -0.234 0.005
LVEN -0.150 0.092 -0.155 0.091 -0.166 0.103 -0.343 0.001
Age 0.593 0.001 0.541 0.001 -0.110 0.266 0.361 0.001
Gender -0.122 0.170 -0.089 0.328 0.136 0.180 0.030 0.727
Pare 0.281 0.002 0.223 0.015 -0.055 0.583 0.165 0.034

SMC ChP -0.260 0.016 -0.237 0.027 -0.179 0.111
LVEN -0.274 0.013 -0.309 0.005 -0.273 0.017
Age 0.368 0.001 0.363 0.001 0.060 0.586
Gender -0.057 0.624 -0.024 0.834 0.182 0.135
Pare 0.092 0.442 0.035 0.766 -0.018 0.884

EMCI ChP -0.242 0.001 -0.257 0.001 -0.122 0.122 -0.054 0.613
LVEN -0.225 0.002 -0.225 0.002 -0.036 0.635 -0.394 0.001
Age 0.453 0.001 0.457 0.001 -0.181 0.012 0.286 0.011
Gender 0.056 0.419 0.045 0.512 -0.008 0.909 -0.092 0.481
Pare 0.118 0.085 0.121 0.076 -0.106 0.143 0.090 0.452

LMCI ChP -0.239 0.046 -0.209 0.078 0.061 0.587
LVEN -0.085 0.467 -0.135 0.248 -0.369 0.001
Age 0.121 0.204 0.151 0.111 0.084 0.345
Gender 0.031 0.757 -0.005 0.962 -0.181 0.057
Pare -0.151 0.116 -0.125 0.190 0.307 0.001

AD ChP -0.209 0.037 -0.212 0.031 -0.116 0.275 0.238 0.194
LVEN -0.184 0.071 -0.212 0.034 -0.177 0.103 -0.462 0.017
Age -0.021 0.810 0.009 0.921 0.121 0.203 0.589 0.003
Gender -0.124 0.224 -0.118 0.238 0.097 0.372 0.225 0.259
Pare -0.026 0.794 -0.070 0.476 -0.067 0.530 -0.335 0.078

β is the standardized coefficient in the regression model
* Bolded numbers indicated statistically significant variables along with their 
corresponding p-values
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complicated interaction among the absolute volumes of 
ChP, LVEN, and parenchyma in multiple regression mod-
els could potentially compromise the statistical analysis. 
The relative ChP volume, expressed as the ratio of ChP 
volume to both LVEN volume and parenchyma volume, 
can be used as an indicator of clearance efficiency. To 
avoid multicollinearity, a stepwise regression model was 
employed. The results showed significant correlations 
between the ratio of ChP and parenchyma volume and 
the AD protein biomarkers. This supports the hypothesis 
that an enlarged ChP volume and enhanced ChP perfu-
sion may contribute to increased CSF production in the 
glymphatic system.

In the statistical models, the ChP-related variables 
exhibited a negative correlation with AD CSF biomark-
ers. These findings align with previous studies that 
reported a negative association between ChP volume and 
t-tau and p-tau levels [6]. This observation may suggest 
a correlation between heightened CSF production and 
the potential for improved metabolic clearance. Moreo-
ver, correlation between Aβ42 and Aβ40 and ChP volume 

in the multiple regression model has not been previously 
reported. This discrepancy might be attributed to the 
advantages offered by our proposed pipeline.

There are a few limitations in our study. First, the pro-
posed pipeline primarily focused on the ChP located 
within the LVEN. Although the ChP in the third and 
fourth ventricles were not included due to the low physi-
cal image resolution, they may play an important role in 
CSF generation. In addition, CSF secretion may also hap-
pen at the ventricular ependyma and the blood–brain 
barrier [37, 38]. Therefore, this work may only illustrate 
the relationship between a portion of CSF generation 
and AD. Second, this work mainly investigated the space 
occupancy of the ChP rather than its actual volume. The 
ChP may appear folded within the ventricle because of 
limitations in MRI resolution. Therefore, further models 
are required to investigate the contributions of ChP vol-
ume or surface area to AD. Third, the present work did 
not integrate ChP perfusion and volume into the same 
statistic model due to the limited sample size. The contri-
butions of both the enlarged ChP volume and increased 
ChP perfusion require further investigation. Forth, addi-
tional confounding variables may require further inves-
tigation. The Apolipoprotein E e4 genotype is a known 
contributor to the AD and may also be associated with 
ChP changes. Other behavioral factors, such as chronic 
drinking, active smoking, and sleep, might also influ-
ence AD progression [39, 40]. It has been reported that 
the glymphatic system becomes more active during sleep 
than when awake [41]. Consequently, sleep quality could 
impact the efficiency of metabolic clearance during sleep. 
In addition, the present study mainly focuses on the 
AD. Recent studies have revealed potential associations 
between ChP and other neurodegenerative diseases such 
as Parkinson’s disease and multiple sclerosis, which may 
benefit from the proposed ChP segmentation pipeline.

Conclusion
Utilizing the proposed accurate ChP segmentation pipe-
line, we identified increased ChP volume and elevated 
ChP blood flow in AD. Noteworthy correlations between 
ChP-related biomarkers and tau protein were identified 
throughout the progression of AD. These findings high-
light the important roles of ChP in the context of AD.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12987- 024- 00554-4.

Table 6 Stepwise regression in each group for p-tau, t-tau, Aβ42, 
and Aβ40

p-tau t-tau Aβ42 Aβ40
Var β p β p β p β p

Total ChP/Pare -0.227 0.001 -0.159 0.001 -0.125 0.026
ChP/LVEN
ChP -0.220 0.001
LVEN -0.234 0.001 -0.384 0.001
Age 0.193 0.001 0.197 0.001 0.317 0.001
Gender
Pare -0.204 0.001 -0.120 0.001

CN ChP/Pare -0.487 0.001 -0.447 0.001 -0.248 0.001
ChP/LVEN
ChP
LVEN -0.205 0.010 -0.308 0.001
Age 0.539 0.001 0.499 0.001 0.357 0.001
Gender
Pare

SMC ChP/Pare
ChP/LVEN
ChP -0.270 0.010 -0.242 0.021
LVEN -0.262 0.015 -0.304 0.005 -0.325 0.001
Age 0.341 0.001 0.353 0.001
Gender
Pare

EMCI ChP/Pare -0.256 0.001 -0.269 0.001
ChP/LVEN
ChP -0.167 0.009
LVEN -0.208 0.002 -0.213 0.001 -0.424 0.001
Age 0.446 0.001 0.450 0.001 -0.144 0.025 0.233 0.016
Gender
Pare

LMCI ChP/Pare
ChP/LVEN
ChP -0.237 0.003 -0.247 0.002
LVEN -0.357 0.001
Age
Gender
Pare -0.174 0.028 -0.176 0.026 0.202 0.007

AD ChP/Pare
ChP/LVEN 0.547 0.004
ChP -0.246 0.011 -0.245 0.010
LVEN -0.220 0.022 -0.255 0.007 -0.195 0.027
Age 0.629 0.001
Gender
Pare

https://doi.org/10.1186/s12987-024-00554-4
https://doi.org/10.1186/s12987-024-00554-4
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Supplementary materials 1. Table S1. Model summary. Table S2. Leven 
tests for the homogeneity of variance on ChP and LVEN volume. Table S3: 
Normality tests of ChP and LVEN volume by Shapiro-Wilk test. Table S4. 
Tukey Post Hoc for pairwise means comparisons for ChP volumes after 
ANOVA test. Table S5. Post Hoc multiple comparisons of LVEN volume after 
non-parametric independent-samples Kruskal-Wallis test is significant. 
Table S6. Leven tests for the homogeneity of variance on relative perfu-
sion. Table S7: Normality test of relative perfusion by Shapiro-Wilk test. 
Figure S1. Histogram of proteins level for Aβ42, Aβ40, t-tau, and p-tau. 
Figure S2. The fitted linear relationship between the protein level and ChP 
volume for each study group. β is the standardized regression coefficient. 
Figure S3. The fitted linear relationship between the protein level and ChP 
volume. β is the standardized regression coefficient.

Acknowledgements
Data collection and sharing for this project was funded by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant 
U01 AG024904) and DOD ADNI (Department of Defense award number 
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and through 
generous contributions from the following: AbbVie, Alzheimer’s Association; 
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; 
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 
Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; 
Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; 
Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 
Therapeutics. The Canadian Institutes of Health Research is providing funds 
to support ADNI clinical sites in Canada. Private sector contributions are 
facilitated by the Foundation for the National Institutes of Health (www. fnih. 
org). The grantee organization is the Northern California Institute for Research 
and Education, and the study is coordinated by the Alzheimer’s Therapeutic 
Research Institute at the University of Southern California. ADNI data are dis-
seminated by the Laboratory for Neuro Imaging at the University of Southern 
California.
The authors thank the MICCAI 2012 Grand Challenge and Workshop on Multi-
Atlas Labeling and the Neuromorphometrics, Inc to provide the LVEN dataset.
Alzheimer’s Disease Neuroimaging Initiative—data used in preparation of this 
article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI 
contributed to the design and implementation of ADNI and/or provided data 
but did not participate in analysis or writing of this report. A complete listing 
of ADNI investigators can be found at: http:// adni. loni. usc. edu/ wp- conte nt/ 
uploa ds/ how_ to_ apply/ ADNI_ Ackno wledg ement_ List. pdf

Author contributions
J.L., Y.X., X.F., and L.Z. prepared the proposed model. J.L. and L.Z. performed 
the data analysis and wrote the main manuscript text. Y.H. prepared statistical 
analysis. C.M. and W.D. provided the discussion of the results. All authors 
reviewed and approved the manuscript.

Funding
This work is supported by the National Key R&D Program of China 
(2023YFE0118900), the Alzheimer’s Association (AARF-18-566347), Zhejiang 
Provincial Natural Science Foundation of China (LGJ22H180004, 202006140, 
and 2022C03057), and the MOE Frontier Science Center for Brain Science & 
Brain-Machine Integration, Zhejiang University.

Availability of data and materials
The present model and processed data will be provided online at https:// 
github. com/ princ eleeee/ ChP- Seg. The raw data are owned by the ADNI group.

Declarations

Ethics approval and consent to participate
The present work is based on the ADNI database. The IRB and consents were 
managed by the ADNI study.

Consent for publication
The content of the manuscript has not been published publicly or submitted 
elsewhere.

Competing interests
There is no conflict of interest from all the authors.

Author details
1 College of Biomedical Engineering & Instrument Science, Zhejiang University, 
Hangzhou, Zhejiang, China. 2 Psychology, Beijing Normal University, Beijing, 
China. 3 Biomedical Engineering, University of Virginia, Charlottesville, VA, US. 
4 Department of Computer Science, State University of New York at Bingham-
ton, Binghamton, NY, US. 

Received: 5 February 2024   Accepted: 26 May 2024

References
 1. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A para-

vascular pathway facilitates CSF flow through the brain parenchyma 
and the clearance of interstitial solutes. Incl Amyloid β Sci Transl Med. 
2012;4(147):147ra111-147ra111.

 2. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas 
CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recom-
mendations from the national institute on aging-Alzheimer’s association 
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s 
Dement. 2011;7:263–9.

 3. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, 
et al. NIA-AA research framework: toward a biological definition of Alzhei-
mer’s disease. Alzheimer’s Dement. 2018;14:535–62.

 4. Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer’s disease utilizing 
amyloid and tau as fluid biomarkers. Exp Mol Med. 2019;51:1–10.

 5. Hutton D, Fadelalla MG, Kanodia AK, Hossain-Ibrahim K. Choroid plexus 
and CSF: an updated review. Br J Neurosurg. 2022;36:307–15.

 6. Tadayon E, Pascual-Leone A, Press D, Santarnecchi E. Choroid plexus 
volume is associated with levels of CSF proteins: relevance for Alzheimer’s 
and parkinson’s disease. Neurobiol Aging. 2020;89:108–17.

 7. Choi JD, Moon Y, Kim H-J, Yim Y, Lee S, Moon W-J. Choroid plexus volume 
and permeability at brain MRI within the Alzheimer disease clinical spec-
trum. Radiology. 2022;304:635–45.

 8. Senay O, Seethaler M, Makris N, Yeterian E, Rushmore J, Cho KIK, et al. A 
preliminary choroid plexus volumetric study in individuals with psycho-
sis. Hum Brain Mapp. 2023. https:// doi. org/ 10. 1002/ hbm. 26224.

 9. Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, 
Poirion E, et al. Choroid plexus enlargement in inflammatory multiple 
sclerosis: 3.0-T MRI and translocator protein PET evaluation. Radiology. 
2021;301:166–77.

 10. Müller J, Sinnecker T, Wendebourg MJ, Schläger R, Kuhle J, Schädelin S, 
et al. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica 
spectrum disorder: a retrospective, cross-sectional analysis. neurology—
neuroimmunology neuroinflammation. 2022; 9. https:// nn. neuro logy. 
org/ conte nt/9/ 3/ e1147. [11 oct 2023]

 11. Zhao L, Feng X, Meyer CH, Alsop DC. Choroid plexus segmentation using 
optimized 3D U-Net. In: Zhao L, Feng X, Meyer CH, Alsop DC, editors. 
2020 IEEE 17th international symposium on biomedical Imaging(ISBI). 
New York: IEEE; 2020. p. 381–4.

 12. For the Alzheimer’s Disease Neuroimaging Initiative, Tadayon E, Moret B, 
Sprugnoli G, Monti L, Pascual-Leone A, et al. Improving choroid plexus 
segmentation in the healthy and diseased brain: relevance for tau-PET 
imaging in dementia. JAD. 2020;74:1057–68.

 13. Storelli L, Pagani E, Rubin M, Margoni M, Filippi M, Rocca MA. A fully auto-
matic method to segment choroid plexuses in multiple sclerosis using 

http://www.fnih.org
http://www.fnih.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://github.com/princeleeee/ChP-Seg
https://github.com/princeleeee/ChP-Seg
https://doi.org/10.1002/hbm.26224
https://nn.neurology.org/content/9/3/e1147
https://nn.neurology.org/content/9/3/e1147


Page 11 of 11Li et al. Fluids and Barriers of the CNS           (2024) 21:56  

conventional MRI sequences. J Magn Reson Imag. 2024. https:// doi. org/ 
10. 1002/ jmri. 28937.

 14. Eisma JJ, McKnight CD, Hett K, Elenberger J, Song AK, Stark AJ, et al. Cho-
roid plexus perfusion and bulk cerebrospinal fluid flow across the adult 
lifespan. J Cereb Blood Flow Metab. 2023;43:269–80.

 15. He K, Gan C, Li Z, Rekik I, Yin Z, Ji W, et al. Transformers in medical image 
analysis. Intell Med. 2023;3:59–78.

 16. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. 
A survey on deep learning in medical image analysis. Med Imag Anal. 
2017;42:60–88.

 17. Opfer R, Krüger J, Spies L, Ostwaldt A-C, Kitzler HH, Schippling S, et al. 
Automatic segmentation of the thalamus using a massively trained 3D 
convolutional neural network: higher sensitivity for the detection of 
reduced thalamus volume by improved inter-scanner stability. Eur Radiol. 
2023;33:1852–61.

 18. Chen Y, Yue H, Kuang H, Wang J. RBS-Net: Hippocampus segmentation 
using multi-layer feature learning with the region, boundary and struc-
ture loss. Comput Biol Med. 2023;160: 106953.

 19. Rau A, Schröter N, Rijntjes M, Bamberg F, Jost WH, Zaitsev M, et al. Deep 
learning segmentation results in precise delineation of the putamen in 
multiple system atrophy. Eur Radiol. 2023;33:7160–7.

 20. Yu X, Yang Q, Zhou Y, Cai LY, Gao R, Lee HH, et al. UNesT: Local spatial 
representation learning with hierarchical transformer for efficient medical 
segmentation. Med Imag Anal. 2023;90: 102939.

 21. Coupé P, Mansencal B, Clément M, Giraud R, Denis de Senneville B, Ta 
V-T, et al. Assemblynet: a large ensemble of CNNs for 3D whole brain MRI 
segmentation. Neuroimage. 2020;219: 117026.

 22. Huo Y, Xu Z, Xiong Y, Aboud K, Parvathaneni P, Bao S, et al. 3D whole brain 
segmentation using spatially localized atlas network tiles. Neuroimage. 
2019;194:105–19.

 23. Schmidt-Mengin M, Ricigliano VAG, Bodini B, Morena E, Colombi A, 
Hamzaoui M, et al. Axial multi-layer perceptron architecture for automatic 
segmentation of choroid plexus in multiple sclerosis. medical imaging 
2022: image processing. SPIE. 2022. https:// doi. org/ 10. 1117/ 12. 26129 12. 
full.

 24. Yazdan-Panah A, Schmidt-Mengin M, Ricigliano VAG, Soulier T, Stankoff B, 
Colliot O. Automatic segmentation of the choroid plexuses: method and 
validation in controls and patients with multiple sclerosis. NeuroImage 
Clin. 2023;38:103368.

 25. Budd S, Robinson EC, Kainz B. A survey on active learning and human-
in-the-loop deep learning for medical image analysis. Med Imag Anal. 
2021;71: 102062.

 26. Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, 
Fernández-Leal Á. Human-in-the-loop machine learning: a state of the 
art. Artif Intell Rev. 2023;56:3005–54.

 27. MICCAI multi-atlas labeling challenge data. 2012. http:// www. neuro 
morph ometr ics. com/ 2012_ MICCAI_ Chall enge_ Data. html. [16 jun 2023]

 28. GitHub—iitzco/deepbrain: deep learning tools for brain medical images. 
https:// github. com/ iitzco/ deepb rain. [12 oct 2023]

 29. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: 
learning dense volumetric segmentation from sparse annotation. In: 
Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Medical 
image computing and computer-assisted intervention—MICCAI 2016. 
Cham: Springer International Publishing; 2016. p. 424–32.

 30. Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M. FastSurfer—a 
fast and accurate deep learning based neuroimaging pipeline. Neuroim-
age. 2020;219: 117012.

 31. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, 
et al. Recommended implementation of arterial spin-labeled perfusion 
MRI for clinical applications: a consensus of the ISMRM perfusion study 
group and the European consortium for ASL in dementia: recommended 
implementation of ASL for clinical applications. Magn Reson Med. 
2015;73:102–16.

 32. Bansal S, Satapathy A, Purkait S, Sahu RN. Shunt ascites in a fourth ven-
tricular choroid plexus papilloma in a young child: an uncommon case. J 
Pediatr Neurosci. 2020;15:338–40.

 33. Pawar SJ, Sharma RR, Mahapatra AK, Lad SD, Musa MM. Choroid plexus 
papilloma of the posterior third ventricle during infancy & childhood: 
report of two cases with management morbidities. Neurol India. 
2003;51:379–82.

 34. Raha-Chowdhury R, Henderson JW, Raha AA, Vuono R, Bickerton A, Jones 
E, et al. Choroid plexus acts as gatekeeper for TREM2, abnormal accu-
mulation of ApoE, and fibrillary tau in alzheimer’s disease and in down 
syndrome dementia. J Alzheimer’s Dis. 2019;69:91.

 35. Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, 
et al. Longitudinal change in CSF biomarkers in autosomal-dominant 
Alzheimer disease. Sci Transl Med. 2014;6:226ra30.

 36. Sutphen CL, McCue L, Herries EM, Xiong C, Ladenson JH, Holtzman DM, 
et al. Longitudinal decreases in multiple cerebrospinal fluid biomarkers 
of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzhei-
mer’s Dement. 2018;14:869–79.

 37. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid 
circulation. Fluid Barriers CNS. 2014;11:10.

 38. Milhorat TH. Structure and function of the choroid plexus and other sites 
of cerebrospinal fluid formation. Int Rev Cytol. 1976;47:225–88.

 39. Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, et al. Association of cigarette 
smoking with cerebrospinal fluid biomarkers of neurodegeneration, 
neuroinflammation, and oxidation. JAMA Netw Open. 2020;3: e2018777.

 40. Day SM, Gironda SC, Clarke CW, Snipes JA, Nicol NI, Kamran H, et al. 
Ethanol exposure alters Alzheimer’s-related pathology, behavior, and 
metabolism in APP/PS1 mice. Neurobiol Dis. 2023;177: 105967.

 41. Smets NG, Strijkers GJ, Vinje V, Bakker ENTP. Cerebrospinal fluid turnover 
as a driver of brain clearance. NMR Biomed. 2023. https:// doi. org/ 10. 
1002/ nbm. 5029.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/jmri.28937
https://doi.org/10.1002/jmri.28937
https://doi.org/10.1117/12.2612912.full
https://doi.org/10.1117/12.2612912.full
http://www.neuromorphometrics.com/2012_MICCAI_Challenge_Data.html
http://www.neuromorphometrics.com/2012_MICCAI_Challenge_Data.html
https://github.com/iitzco/deepbrain
https://doi.org/10.1002/nbm.5029
https://doi.org/10.1002/nbm.5029

	Associations between the choroid plexus and tau in Alzheimer’s disease using an active learning segmentation pipeline
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Method
	Datasets for the ChP segmentation pipeline developments
	Datasets for investigating the ChP-related features in AD
	ChP segmentation pipeline
	Statistical models
	ChP and LVEN volumes in the AD
	ChP perfusion functionality comparison
	Relationship between ChP volume and protein levels


	Results
	ChP segmentation accuracy
	ChP volumes in AD
	ChP blood flow in AD
	ChP volumes and protein levels

	Discussion
	Conclusion
	Acknowledgements
	References


